top of page

What is

Data Collaboration?

Data Collaboration is an approach to the development of new digital solutions that prioritizes the blending of diverse sources of human and machine intelligence for the generation of collaborative intelligence.

Data collaboration is supported by data management platform technology that connects data from existing sources (e.g. apps, spreadsheets) and combines it with original data to enable IT teams, data scientists, and citizen developers to operationalize it within unlimited data models and new digital solutions.


In data collaboration, data silos and copies are minimized (and in some cases eliminated) in order to support collaboration on golden records and enable data stewards and data owners to set access controls that are universally-enforced at the data-layer.


Use cases for data collaboration include the development of new applications, analytics, automations, AI/ML operationalization, application augmentation, and legacy system modernization.

Data Collaboration is a highly efficient way to develop new technology

Data collaboration empowers multiple stakeholders to deliver a shared outcome while retaining control of their data

Collaboration everywhere,
but not on data?

Many folks will remember when writing a business document involved sending email attachments back and forth among contributors.The versions immediately got out of sync and it was basically a nightmare for everyone involved. 

Then came Google Docs, Dropbox, and Asana and we quickly learned the simplicity and power of real-time collaboration between people and software.

Interestingly, collaboration seems to be happening everywhere except on the data that we use to power our organizations and digital technology.


So what's the deal?

Problem 1:
Apps create silos

You've probably heard the expression "There's an app for everything"? 


Here's the full version: 


"There's an app for everything, and a database for every app"


Even small businesses now use 100s of apps to run their business while enterprise and public sector organizations maintain thousands.

The big problem with silos is that when we need to bring the data back together (to build new apps, analytics, AI/ML) we generally do it by making copies.

Data Collaboration Alliance data silos

Data warehouses and integration hubs do not prevent the proliferation of app-specific data silos

Web 2.0 is like a global photocopier for sensitive data

Current approaches to application development are based on the unrestricted exchange of copies between app silos

Problem 2:
Silos create copies

The routine exchange of copies between applications is known as point-to-point data integration.

Doing this at scale makes it nearly impossible for teams to work on the same data in order to deliver a shared goal e.g. building a new app, dashboard, map, or automation.

Copies also make data access, governance, privacy, and compliance a HUGE challenge.

Towards true
data collaboration

The good news is that organizations are already adopting new standards and technologies that make it possible to reduce and even eliminate silos and copies in order to support true data collaboration.

But how do we encourage more innovators and developers to join the movement?


Adoption will be driven by the natural incentives of saving time and money.

It's time to meet The Data Collaboration Flywheel...

Data Collaboration is powered by nodes, pods, and wallets.

Shared data architectures are replacing data silos and

copy-based data integration


Building new digital solutions from a foundation of control kickstarts a cycle of compounding efficiency


Simplification generates time and resource efficiencies that stimulate demand for more control.



The elimination of copies makes meaningful control and ownership possible for data stakeholders.




Data ownership

Data minimization

Federated governance

Democratized IT

Increased capacity

Simplified compliance

Improved auditability 



Collaboration accelerates data enrichment and simplifies the development of new digital solutions.



Control creates agency and encourages the granting of access for data collaboration projects.


While the potential for Data Collaboration is incredibly exciting, it would be a mistake to assume that the shift from data silos to controlled environments will happen overnight. 


Similarly, it would be naive to assume that the citizens, nonprofits, and businesses who contribute data to digital ecosystems have the time or inclination to manage access (hey there, Privacy Paradox).


Imagine if every app required end users to maintain a unique set of access controls - it wouldn't be long before we'd all be required to set hundreds or even thousands of controls, or to be more accurate, give up and not do any of this. 🤣


It's likely that we'll see the emergence of new professions (e.g. Data Access Consultants) that will help to fill the gap, or perhaps digital agents, powered by Machine Intelligence, will adopt the role of our "robotic custodian".   


But as the futurist William Gibson once observed; "The future is already here, it's just not very evenly distributed." 

At the Alliance, we see ourselves as an accelerator helping to scale-up the technologies, standards, protocols, and best-practices that will make data collaboration the new normal.


The Data Collaboration Alliance offers multiple opportunities for individuals and organizations to support meaningful Data Ownership and true Data Collaboration 

bottom of page